回馈制动,回馈制动的交流回馈制动

维修要闻     2020-12-24    浏览:17

回馈制动的交流回馈制动

简介
回馈制动采用的是有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。
要实现回馈制动,就必须要将回馈电能进行同频同相控制、回馈电流控制等条件,才能将回馈电能安全送达电网上。 总述
要完成回馈制动,需要完成三方面的工作:1)检测电压何时开始回馈;2)保持回馈制动时与电网同频同相;3)回馈制动时限制回馈电流的大小。
电压的检测
在电压检测中,主要检测公共直流母线电压和电网电压,检测电网电压时,一般需要考虑电网的波动,根据变频器的中间环节所能承受的直流电压,再利用回馈制动时,电网允许向上波动+20%,由此在直流电压检测时,在电压值为(1.2*√2)倍的电网线电压有效值时可以启动逆变块A工作,进入回馈制动状态。
电网频率和相位检测
在回馈制动中,是否有效地回馈能量,关键是保证与电网同频、同相,并且回馈时要保证电网输出正电压时,输出负电流。其次,在回馈时要尽量选取电网线电压的高电压段,如图2所示,这样当回馈电流一定时可以获得较大的能量回馈功率。
设定逆变块A中的功率器件的开关状态要求与电网同步,同步信号如图2中(B)所示,下面是一种简单的同步信号控制方式,可以简单的得到V1-V6的同步方波脉冲。 只有在不易发生故障的稳定电网电压下(电网电压波动不大于 10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。
在回馈时,对电网有谐波污染;
控制复杂,成本较高。 在回馈制动中,合理的控制回馈电流大小也是至关重要,回馈电流的大小必须满足能量回馈功率的要求,如果系统回馈功率小于电机在发电状态时的输出功率,在变频器的公共直流母线上电压就会继续升高。由于电网电压是一定的,系统回馈功率的大小是由回馈电流的大小决定的。
另外回馈电流的大小必须控制在所使用的IGBT的额定范围内。
回馈制动时,回馈电流变化速度较快,就需要采用有效的控制方式,一般采用滞环电流比较法控制。 回馈制动特别适用于电动机功率较大,如大于等于100kw,设备的转动惯量较大,且反复短时连续工作,从高速到低速的减速降幅较大,制动时间又短,需要强力制动的场合,如电力机车、采油等行业。


怎样使电机进入回馈制动状态

回馈制动又叫做再生发电制动。
主要是正在运行的电动实际转速超过额定同步转速,这个时候电机处于再生发电状态,这个转矩与电动转矩相反,所以成了制动转矩。
一般用在位能负载作用下的起重机械和多速电机高速转低速时。
什么是能耗制动,反接制动及回馈制动?

1》能耗制动:当电动机的定子绕组从交流电源上切断,并把它的两个接线端立即接到直流电源上(Y接时,接入二相定子绕组;△接时,接入一相定子绕组),直流电流在定了绕组中产生一个静止磁场。由于机械惯性,转子仍在转动,于是转子绕组中感生电动势,并产生感应电流,电机处于发电状态,其电磁转矩与转子旋转方向相反,起到制动作用。
2》反接制动:反接制动是将正在运行的电动机电源相序突然反接,使旋转磁场的旋转方向同转子实际旋转方向相反,此时的电磁转矩起到制动转矩的作用。
3》回馈制动:回馈制动主要用在起重设备的异步电动机上。当重物下降时,首先将电动机按下降的方向接电,在重力力矩作用下,转子转速大于同步转速,因此转子导体中感应电势的方向改变了,转子电流的方向也随之改变。这时电磁转矩方向与转子旋转方向相反,起到制动作用。
4》机械制动(抱闸制动):所谓机械制动,就是利用外加的机械作用使电动机转子迅速停止旋转的一种方法,通常是采用电磁机械产生的制动力。
三相异步电机回馈制动过程

你分析的挺透彻的。说的没错,电机的定子与转子的电流方向都发生了改变。

********************************************************************
回馈制动,转子由于外部机械装置(相当于一个原动机)带动旋转,转子此时转速高于旋转磁场转速,转差率是负的,电机做发电机运行,所发的电回馈给电网。
此时转子导体中的感应电动势以及电流的有功分量将与电动机状态时相反,因此电磁转矩的方向与旋转磁场和转子转向相反,即电磁转矩为制动性质的转矩。为使转子持续地以高于旋转磁场的转速旋转,原动机的驱动转矩必须克服制动的电磁转矩;此时转子从原动机输入机械功率,通过电磁感应由定子输出电功率,电机处于发电机状态。

相关搜索

相似文章