控制系统设计,plc控制系统设计的一般步骤

维修要闻     2020-12-24    浏览:16

plc控制系统设计的一般步骤

丰炜PLC说明资料1-PLC系统设计及选型方法

在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,若采用可编程控制器(PLC)可以轻松的解决,PLC已成为解决自动控制问题最有效的工具之一,越来越广泛的应用于工业控制领域中,本文简要叙述了PLC控制系统设计的步骤及PLC的基本选型方法,供大家参考。

一、可编程控制器应用系统设计与调试的主要步骤
( 1 )深入了解和分析被控对象的工艺条件和控制要求
这是整个系统设计的基础,以后的选型、编程、调试都是以此为目标的。
a .被控对象就是所要控制的机械、电气设备、生产线或生产过程。
b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和连锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这样可化繁为简,有利于编程和调试。
( 2 )确定 I/O 设备
根据被控对象的功能要求,确定系统所需的输入、输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器、编码器等,常用的输出设备有继电器、接触器、指示灯、电磁阀、变频器、伺服、步进等。
( 3 )选择合适的 PLC 类型
根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、 I/O 模块的选择、特殊模块、电源模块的选择等。
( 4 )分配 I/O 点
分配 PLC 的输入输出点,编制出输入 / 输出分配表或者画出输入 / 输出端子的接线图。接着就可以进行 PLC 程序设计,同时可进行控制柜或操作台的设计和现场施工。
( 5 )编写梯形图程序
根据工作功能图表或状态流程图等设计出梯形图即编程。这一步是整个应用系统设计的最核心工作,也是比较困难的一步,要设计好梯形图,首先要十分熟悉控制要求,同时还要有一定的电气设计的实践经验。
( 6 )进行软件测试
将程序下载到 PLC 后,应先进行测试工作。因为在程序设计过程中,难免会有疏漏的地方。因此在将 PLC 连接到现场设备上去之前,必需进行软件测试,以排除程序中的错误,同时也为整体调试打好基础,缩短整体调试的周期。
( 7 )应用系统整体调试
在 PLC 软硬件设计和控制柜及现场施工完成后,就可以进行整个系统的联机调试,如果控制系统是由几个部分组成,则应先作局部调试,然后再进行整体调试;如果控制程序的步序较多,则可先进行分段调试,然后再连接起来总调。调试中发现的问题,要逐一排除,直至调试成功。
( 8 )编制技术文件
系统技术文件包括说明书、电气原理图、电器布置图、电气元件明细表、PLC梯形图等。

在PLC系统设计时,确定控制方案后,下一步工作就是PLC的选型工作。应详细分析工艺过程的特点、控制要求,明确控制任务和范围,确定所需的操作和动作,然后根据控制要求,估算输入输出点数、确定PLC的功能、外部设备特性等,最后选择有较高性能价格比的PLC和设计相应的控制系统。下面结合我公司丰炜PLC具体说明一下选型步骤及系统设计时注意事项。

二、 PLC 型号的选择
( 1 )通讯功能选择
根据系统的工艺要求,首先应确定系统用 PLC单机控制,还是用PLC形成网络,以及是否和其他设备有通信,如触摸屏,变频器,检测控制设备等等。这样就可以根据通讯接口数量、类型(RS-232,422,485)及通讯协议,规划PLC类型和通讯扩充卡或通讯扩充模块。

( 2 )控制功能选择
根据系统的工艺要求,应确定系统是否有A/D、D/A转换,温度采集控制,比例阀控制等工艺要求,选择VB系列相应的特殊模块,同时根据特殊模块数量选择VB系列相应的主机(VB0可接4个特殊模块,VB1可接8个特殊模块,VB2可接16个特殊模块)。

( 3 )高速计数及高速脉冲输出选择
根据系统的工艺要求,确认系统是否有高速计数或高速脉冲输出及相应的点数和频率,来选择相应型号的主机。
丰炜PLC全系列都具有软体32位元上下数带停电保持高速计数器,其中单相计数器11点(最高计数频率10KHz),双相计数器5点(最高计数频率10KHz),A/B相计数器5点(最高计数频率5KHz,VH系列为4点)。VB1系列在软体计数器基础上还有2点最高计数频率高达200KHz的硬体32位元高速计数器。
关于高速脉冲输出,VH仅有1点7KHz的脉冲输出,VB0及VB2各有2点7KHz的脉冲输出,VB1有2点20KHz和2点200KHz的脉冲输出(VB1系列专为高速输入及速位控制应用而设计)。
其中需要注意的是高速脉冲输出应采用晶体管输出形式,不然很容易损坏。由于高速计数器只有输入端X0-X7 ,当其中某些点被占用后,其对应的其他高速计数器将不可再使用。




( 4 )I/O点数及输入输出形式选择
要先弄清除控制系统的 I/O 总点数,再按实际所需总点数的 10 ~ 20 %留出备用量(为系统的改造等留有余地)后确定所需 PLC 的点数。然后根据系统的外部电路选择合适的输入输出形式。

三.输入回路的设计
( 1 )电源回路
PLC供电电源一般为 AC85—240V(也有DC24V),适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等)。注:丰炜PLC供电交流电源为 AC85—264V直流电源为 DC21—28V。
( 2 )PLC上DC24V电源的使用
各公司 PLC产品上一般都有DC24V电源,但该电源容量小,为几十毫安至几百毫安,用其带负载时要注意容量,同时作好防短路措施(因为该电源的过载或短路都将影响PLC的运行)。注:丰炜PLC交流电源主机及扩充机自带DC24V输出规格为:DC24V±15% 420mA,且内部有保护电路可有效防止电源短路情况。
( 3 )外部DC24V电源
若输入回路有 DC24V供电的接近开关、光电开关等,而PLC上DC24V电源容量不够时,要从外部提供DC24V电源,具体接线方法请参阅PLC硬体说明书。
( 4 )输入的灵敏度
各厂家对PLC的输人端电压和电流都有规定,以丰炜PLC为例,丰炜PLC的输入值为:DC24V、7mA,启动电流为3.5mA以上,关断电流为1.5mA以下,因此,当输入回路串有二极管或电阻(不能完全启动),或者有并联电阻或有漏电流时(不能完全切断),就会有误动作,灵敏度下降,对此应采取措施。另一方面,输入反应时间为10mS(X0~X7 VB系列可变更为0~60mS,VH系列可变更为0~15mS)隔离方式为光耦隔离,VH输入型号形式为无电压接点或NPN开集电极晶体管,VB输入型号形式为无电压接点或NPN/PNP开集电极晶体管。

四.输出回路的设计
( 1 )各种输出方式之间的比较
a.继电器输出:优点是不同公共点之间可带不同的交、直流负载,且电压也可不同,带负载电流可达2A/点;但继电器输出方式不适用于高频动作的负载,这是由继电器的寿命及响应时间决定的。其寿命随带负载电流的增加而减少,一般在10万次以上,响应时间为10ms
b.晶体管输出:最大优点是适应于高频动作,响应时间短,OFF→ON:20uS以下,ON→OFF:100uS以下,但它只能带 DC 5—30V的负载,最大输出负载电流为0.5A/点,但每4点共COM不得大于0.8A。
( 2 )抗干扰与外部互锁
当PLC输出带感性负载,负载断电时会对PLC的输出造成浪涌冲击,为此,对直流感性负载应在其旁边并接续流二极管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。
用于正反转的接触器同时合上是十分危险的事情,像这样的负载除了在PLC内部已进行软件互锁外,在PLC的外部也应进行互锁,以加强系统的可靠性。
( 3 )“COM”点的选择
不同的 PLC产品,其“COM”点的数量是不一样的,有的一个“COM”点带4个输出点,有的带1个输出点。当负载的种类多,且电流大时,采用一个“COM”点带1个输出点的 PLC产品;当负载数量多而种类少时,采用一个“COM”点带4个输出点的PLC产品,这样会对电路设计带来很多方便。每个“COM”点处加一熔丝,以继电器输出为例,1个输出时加2—3A的熔丝,4点输出的加5—10A的熔丝,因为PLC内部一般没有熔丝,为避免负载短路而烧毁基板,请在外部安装保险丝。
( 4 )PLC外部驱动电路
对于 PLC输出不能直接带动负载的情况下,必须在外部采用驱动电路:可以用三极管驱,也可以用固态继电器或晶闸管电路驱动,同时应采用保护电路和浪涌吸收电路,且每路有显示二极管(LED)指示。印制板应做成插拔式,易于维修。丰炜新推出的VB系列IDC连接器机型,就提供MOSFET及继电器转接模组的,在以后的资料中我们会详细说明。

五.扩充模块及特殊模块之电源供应
PLC主机及扩充机本身具备电源供给电路,而扩充模块及特殊模块的电源供应(5V及12V,5V用于提供CPU、总线及指示灯电压,12V用于提供驱动负载电压),必须依赖主机及扩充机提供,VB系列还可以借助VB-PWR电源扩充模块提供。

六.PLC的输入输出布线
PLC的输入输出布线也有一定的要求,请看各产品的使用说明书。
基于PLC矿井提升机控制系统设计  毕业论文

目 录

1 绪论 3
1.1 国外矿井提升机的现状 3
1.2 国内提升机的现状与发展趋向 3
1.3 本章小结 4
2 提升机控制系统 5
2.1 矿井提升机对电气控制系统的要求 5
2.2 电控系统组成 8
2.3 本章小结 11
3 提升机主控系统设计 12
3.1 主控系统组成 12
3.2 主控系统功能设计 13
3.2.1 主控制系统工作模式 13
3.2.2 主控制系统的功能 13
3.3 主控制系统PLC程序设计 14
3.3.1 PLC资源配置 14
3.3.2 PLC控制程序结构 15
3.3.3 程序设计思路 15
3.3.4 主控制系统的特点 16
3.4 PLC与上位机之间的通讯 18
3.5 本章小结 18
4 全数字直流调速系统设计 19
4.1 调速系统实现数字化的必要性 19
4.2 数字式直流双闭环调速系统原理 19
4.3 晶闸管变流装置的设计计算 20
4.3.1 整流变压器额定参数计算 20
4.3.2 晶闸管额定参数的计算 23
4.3.3 晶闸管额定参数的选型 24
4.4 全数字直流调速装置的选择 25
4.5 速度曲线优化设计 27
4.5.1 S形速度图提升的优点 28
4.5.2 S型速度曲线分析 28
4.5.3 行程控制算法分析 30
4.6 全数字直流调速系统参数调整 32
4.7 本章小结 34
5 提升机数字深度指示器 35
5.1 DSP数字深度指示器介绍 35
5.1.1 工作原理 35
5.1.2 系统构成 35
5.1.3 同步校正 36
5.1.4 罐笼位置指示 38
5.1.5 罐笼运行监控 38
5.1.6 逐点速度监控 39
5.1.7 罐位输出 39
5.2 DSP与上位机的通讯设计 40
5.2.1 RS232串口连接方式 40
5.2.2 软件系统功能设计 40
5.3 本章小结 42
6 上位机监测管理系统 43
6.1 硬件系统 43
6.2 软件系统 43
7 信号系统 46
7.1 信号系统的基本任务及基本要求 47
7.2 信号系统的组成 47
7.3 信号系统的功能实现 48
7.3.1 功能 48
7.3.2 PLC-214资源使用 48
7.3.3 程序思路 48
7.4 本章小结 49
结 论 50
感 谢 51
参考文献 52











1 绪论
矿井提升装置是采矿业的重要设备,提升机的电力传动特性复杂,电动机频繁正反向,经常处于过负荷运转和电动、制动不断地转换的状态中。对提升机来说,运行的安全、可靠性是至关重要的,因此,安全运行就成为提升机设计、制造的首要考虑问题。随着科学技术的进步和矿井生产现代化要求的不断提高,人们对提升机工作特性的认识进一步深化,提升设备及拖动控制系统也逐步趋于完善,各种新技术、新工艺逐步应用于矿井提升设备中[6]。
1.1 国外矿井提升机的现状
1.晶闸管-电动机(SCR-D)直流低速直联拖动系统
部分发达国家原有的交流提升机已基本上被晶闸管-电动机(SCR-D)系统所取代。如AEG公司采用低速直联的SCR-D系统,电机功率3000kW,额定转速55.8r/min,滚筒直径6.5m,提人速度17m/s,提物速度20m/s,提升高度1200m,具有完善的保护系统;采用磁场反并联,有平波电抗器及卧式深度发送装置;采用积分给定与行程给定相结合的双重给定信号;主回路采用两组三相桥组成12脉动顺抗整流,大大提高了功率因数。
2.交流变频调速同步机驱动提升系统
SCR-D直流拖动系统趋于成熟,且采用了顺控技术等措施来提高功率因数,但其功率因数仍然较低,从而从电网吸收大量的无功功率,且对电网品质因数产生严重的影响,提升容量越大,问题越突出。再则,直流电机制造成本高,电枢回路的整流子限制了提升容量的进一步增加,且整流子,碳刷易磨损,加大了维护工作量,故障率高。因此换相整流子是个薄弱环节。由于存在上述两个问题,迫使人们又重新考虑交流拖动方式。自80年代初以来,交流变频供电的同步机拖动异军突起,在大型提升机中发展成为技术、经济均优的拖动方式。
3.微机控制在提升机上的应用
从70年代开始,随着微机技术的发展,微机控制技术已逐步应用于矿井提升机中。其应用主要体现在提升工艺过程微机控制、提升行程控制、提升过程监视、安全回路、制动系统的控制与监视、全数字化调速控制系统。


我有你需要的论文,加④③⑤③⑤①⑥②我来帮助你!
plc 电梯控制系统设计 毕业论文

电梯相关毕业设计
·西门子S7-300PLC在六层变频调速电梯控制中的应用
·七层建筑电梯PLC控制系统设计
·交流变频五层电梯控制系统的设计
·基于西门子PLC的变频调速电梯控制系统的设计
·基于MCGS电梯控制系统设计
·交流变频调速PLC控制电梯系统设计毕业论文
·PLC控制变频调速五层电梯系统设计
·三菱PLC在五层电梯控制中的应用
·PLC在交流双速电梯控制系统中的应用
·松下系列PCL五层电梯控制系统
·松下PLC控制的五层电梯设计
·基于三菱PLC设计的四层电梯控制系统
·三菱PLC控制的四层电梯毕业设计论文
·基于plc的五层电梯控制
·PLC电梯控制毕业论文
·西门子PLC控制的四层电梯毕业设计论文
·基于三菱PLC的三层电梯控制系统设计
·PLC在电梯自动化控制中的应用
·基于FPGA控制的电梯设计与实现
·基于PLC的三层电梯控制系统毕业设计
·基于PLC的电梯系统设计
·基于FXON系列PLC的六层电梯控制设计
·多层住宅楼电梯的PLC控制系统的设计
·三层楼电梯的PLC自控系统的设计
·三层楼交流双速电梯的PLC电气控制系统的设计
·西门子S7300 PLC在双电梯联动控制系统中的应用
·X5系列PLC在电梯控制系统中的应用
·液压电梯设计
·西门子PLC控制的四层电梯设计
·PCL电梯控制系统
·基于单片机的电梯控制系统
·基于PLC控制的调压调速电梯拖动系统设计
·高层建筑电梯控制系统设计
·模拟电梯的制作
·三层电梯的单片机控制电路
·单片机控制电梯系统的设计
·S7-300 PLC在电梯控制中的应用
·基于PLC的七层交流变频电梯控制系统设计
·五层交流双速电梯PLC电气控制系统的设计
·四层交流双速电梯的PLC电气控制系统的设计
·公共建筑和居住建筑中电梯的电气设计及探索
·基于PLC控制的交流变频电梯设计
·基于三菱PLC的四层电梯控制系统的设计
·基于PLC的双速六层电梯控制系统设计
·基于PLC和变频器实现电梯的精确控制
· PLC三层楼电梯系统设计与调试
·电梯控制系统的设计
·PLC十层电梯楼层控制系统的设计
·OMRON公司的C系列P型机对电梯升降控制系统
·四层电梯的PLC控制及组态
·单台电梯PLC控制系统的总体设计
·电梯控制系统设计
·五层单台电梯PLC控制系统的总体设计方案
·交流变频电梯控制系统的设计
基于单片机的温度控制系统设计

 第一章   绪论 1. 1   选题背景 防潮、防霉、防腐、防爆是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。1.2     设计过程及工艺要求 一、基本功能~ 检测温度、湿度~ 显示温度、湿度~ 过限报警 二、主要技术参数 ~  温度检测范围 :  -30℃-+50℃~  测量精度 :      0.5℃~  湿度检测范围 :  10%-100%RH~  检测精度 :      1%RH~  显示方式 :      温度:四位显示   湿度:四位显示~  报警方式 :      三极管驱动的蜂鸣音报警 第二章    方案的比较和论证 当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。2. 1温度传感器的选择 方案一:采用热电阻温度传感器。热电阻是利用导体的电阻随温度变化的特性制成的测温元件。现应用较多的有铂、铜、镍等热电阻。其主要的特点为精度高、测量范围大、便于远距离测量。铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。按IEC标准测温范围-200~650℃,百度电阻比W(100)=1.3850时,R0为100Ω和10Ω,其允许的测量误差A级为±(0.15℃+0.002 |t|),B级为±(0.3℃+0.005 |t|)。铜电阻的温度系数比铂电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。在工业中用于-50~180℃测温。                方案二:采用AD590,它的测温范围在-55℃~+150℃之间,而且精度高。M档在测温范围内非线形误差为±0.3℃。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会损坏。使用可靠。它只需直流电源就能工作,而且,无需进行线性校正,所以使用也非常方便,借口也很简单。作为电流输出型传感器的一个特点是,和电压输出型相比,它有很强的抗外界干扰能力。AD590的测量信号可远传百余米。综合比较方案一与方案二,方案二更为适合于本设计系统对于温度传感器的选择。  2. 2 湿度传感器的选择 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。方案一:采用HOS-201湿敏传感器。HOS-201湿敏传感器为高湿度开关传感器,它的工作电压为交流1V以下,频率为50HZ~1KHZ,测量湿度范围为0~100%RH,工作温度范围为0~50℃,阻抗在75%RH(25℃)时为1MΩ。这种传感器原是用于开关的传感器,不能在宽频带范围内检测湿度,因此,主要用于判断规定值以上或以下的湿度电平。然而,这种传感器只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。方案二:采用HS1100/HS1101湿度传感器。HS1100/HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。不需校准的完全互换性,高可靠性和长期稳定性,快速响应时间,专利设计的固态聚合物结构,由顶端接触(HS1100)和侧面接触(HS1101)两种封装产品,适用于线性电压输出和频率输出两种电路,适宜于制造流水线上的自动插件和自动装配过程等。相对湿度在1%---100%RH范围内;电容量由16pF变到200pF,其误差不大于±2%RH;响应时间小于5S;温度系数为0.04 pF/℃。可见精度是较高的。综合比较方案一与方案二,方案一虽然满足精度及测量湿度范围的要求,但其只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。而且还不具备在本设计系统中对温度-30~50℃的要求,因此,我们选择方案二来作为本设计的湿度传感器。2. 3 信号采集通道的选择 在本设计系统中,温度输入信号为8路的模拟信号,这就需要多通道结构。方案一、采用多路并行模拟量输入通道。这种结构的模拟量通道特点为:(1)    可以根据各输入量测量的饿要求选择不同性能档次的器件。总体成本可以作得较低。(2)    硬件复杂,故障率高。(3)    软件简单,各通道可以独立编程。方案二、采用多路分时的模拟量输入通道。   这种结构的模拟量通道特点为:(1)    对ADC、S/H要求高。(2)    处理速度慢。(3)    硬件简单,成本低。(4)    软件比较复杂。综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。本文来源于: http://www.waibaowang.net/dianzi/

相关搜索

相似文章